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a b s t r a c t

This paper studies free vibration of axially functionally graded beams with non-uniform

cross-section. A novel and simple approach is presented to solve natural frequencies of

free vibration of beams with variable flexural rigidity and mass density. For various end

supports including simply supported, clamped, and free ends, we transform the governing

be determined by requiring that the resulting Fredholm integral equation has a non-trivial

solution. Our method has fast convergence and obtained numerical results have high

accuracy. The effectiveness of the method is confirmed by comparing numerical results

with those available for tapered beams of linearly variable width or depth and graded

beams of special polynomial non-homogeneity. Moreover, fundamental frequencies of a

graded beam combined of aluminum and zirconia as two constituent phases under typical

end supports are evaluated for axially varying material properties. The effects of the

geometrical and gradient parameters are elucidated. The present results are of benefit to

optimum design of non-homogeneous tapered beam structures.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) have striking advantages over traditional homogeneous materials due to continuous
transition of material properties, which avoids shortage resulting from the mismatch of material properties at distinct
interfaces between two dissimilar materials. For instance, FGMs made of ceramic and metal are capable of both suffering from
high-temperature environment because of better thermal resistance of the ceramic phase and exhibiting stronger mechanical
performance of metal phase to guarantee the structural integrity of FGMs. Such excellent performances make FGMs to be
widely used in thermal and structural fields as very promising new materials. With the development of advanced techniques,
FGMs may be fabricated into various structures including beams, plates and shells [1,2].

For functionally graded beams, gradient variation may be orientated in the cross-section or/and in the axial direction.
For the former, there have been a large number of researches devoted to bending, vibration and stability (e.g. [3–8]). For
axially graded beams, similar problems become more complicated because of the governing equation with variable
coefficients. So far, few analytical solutions are found for arbitrary gradient change due to the difficulty of mathematical
treatment of the problem save certain special gradients. For example, by making use of the semi-inverse method, Elishakoff
and co-workers treated a large class of problems involving graded beams of special forms such as polynomials and
obtained explicit fundamental frequency of free vibration [9–14]. However, the semi-inverse method cannot apply for
graded beams of any axial non-homogeneity. In addition, with the aid of special functions, Li solved some free vibration
ll rights reserved.
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and buckling problems of axially graded or non-uniform beams [15,16]. Nevertheless, the assumption of non-homogeneity
or non-uniformity still has special requirements, and is not arbitrary.

On the other hand, a large number of investigations on free vibration of beams with non-uniform cross-section have
been studied. For this problem, the governing equation is still with varying flexural rigidity and distributed mass. There
have been a lot of analytical and numerical approaches presented for dealing with such problems. For example, Laura et al.
[17] employed Rayleigh’s optimization technique to obtain an approximate solution of natural frequencies and buckling
loads for a non-uniform beam subject to a p0cosot�type loading excitation. By using the Rayleigh–Ritz and Lagrange
multiplier method, Abrate [18] has investigated the vibration of a class of tapered non-uniform rods or/and beams.
In [19–22], exact analytical solutions of the longitudinal and transverse vibration of rods/beams have been obtained by
transforming the equation of motion to a differential equation which is analytically solvable in terms of special functions
such as Bessel functions. Based on the fact that a non-uniform beam can be partitioned into multi-homogeneous uniform
sub-beams, Singh et al. [23] developed a numerical method for determining natural frequencies of a non-uniform beam.
Considering material properties being stochastic non-homogeneous properties, the functional perturbation method has
been exploited to calculate natural frequencies and mode shapes of non-homogeneous rods and beams [24]. Although the
integral equation approach according to Green’s functions has been proposed to cope with free vibration of Euler–Bernoulli
beams [25,26], the determination of Green’s functions, which depend on the governing equation itself as well as the end
supports, is often cumbersome. Here we will give a unified approach based on the integral equation method to treat free
vibration of Euler–Bernoulli beams with variable flexural rigidity and mass density. This method does not require to know
Green’s function or influence function, and in contrary, a direct integration of the governing equation together with the end
supports can get a corresponding Fredholm integral equation.

The objective of this paper is to present a novel approach for analyzing free vibration of axially graded and non-uniform
beams. We transform the governing differential equation with variable coefficients in connection with appropriate end
supports to Fredholm integral equations. Then by expanding the mode shapes as power series, the resulting Fredholm
integral equations are reduced to a system of algebraic equations in unknown coefficients. Natural frequencies can be
determined from the existence condition of a non-trivial solution in the resulting system. Obtained results are compared
with those solutions available, and high accuracy can be achieved. Finally, we evaluate the fundamental frequencies of a
graded beam made of Al and ZrO2 under several typical end supports. The effects of the gradient parameter on the
fundamental frequencies are elucidated.

2. Statement of the problem

Consider an axially graded and non-uniform beam of length L which is subject to the action of transverse loading. In the
present study, the material properties and cross-section of the beam are assumed to vary continuously along the length
direction. According to the Euler–Bernoulli beam theory, the governing differential equation reads [27]

q2

qx2
DðxÞ

q2w

qx2

" #
þmðxÞ

q2w

qt2
¼ qðx; tÞ; (1)

where x is axial coordinate, w the deflection and q the distributed transverse loading; DðxÞ ¼ EðxÞIðxÞ is flexural rigidity
which is a function of the axial coordinate x and depends upon both Young’s modulus EðxÞ and the inertial moment of
cross-sectional area IðxÞ; mðxÞ ¼ rðxÞAðxÞ is the mass of the beam per unit length which depends upon cross-sectional area
AðxÞ and mass density rðxÞ. In order to treat free vibration of axially graded and non-uniform beams, it is necessary to take

qðx; tÞ ¼ 0 (2)

and

wðx; tÞ ¼WðxÞeiot ; (3)

where o is angular frequency. Putting the above into Eq. (1) one can get

d2

dx2
DðxÞ

d2W

dx2

" #
�mðxÞo2W ¼ 0; 0rxrL: (4)

Here L is the beam length. For later convenience, we introduce the following variables:

x¼
x

L
; k¼o2L4; (5)

and Eq. (4) can be rewritten as

d2

dx2
DðxÞ

d2W

dx2

" #
�kmðxÞW ¼ 0; 0rxr1; (6)

where we still denote DðxÞ;mðxÞ and WðxÞ as DðxÞ;mðxÞ and WðxÞ, respectively, without confusion.
Since natural frequencies are closely related to the end supports of beams, it is instructive to give explicit expressions

for relevant physical quantities such as bending moment M, shear force Q, and rotation y in terms of WðxÞ and its
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derivatives. For convenience, suppressing the time factor eiot , we have

y¼
dW

L dx
; (7)

M¼�
DðxÞ
L2

d2W

dx2
; (8)

Q ¼�
d

dx
DðxÞ
L3

d2W

dx2

" #
: (9)

It is worth noting that the relationship (9) between deflection w and shear force Q is different from the classical counterpart,
Q ¼�Dd3W=L3dx3, unless flexural rigidity DðxÞ is a constant, corresponding to homogeneous and uniform beams.

3. Derivation of Fredholm integral equations

In this section, we introduce a novel method to solve free vibration of axially graded and non-uniform beams. That is,
the resulting differential equation (6) with varying coefficients subject to various boundary conditions is converted to an
integral equation. To this end, we integrate both sides of Eq. (6) twice with respect to x from 0 to x, yielding

d

dx
DðxÞ

d2W

dx2

" #
�k

Z x

0
mðsÞWðsÞds¼ C1; (10)

DðxÞ
d2W

dx2
�k

Z x

0
ðx�sÞmðsÞWðsÞds¼ C2þC1x: (11)

Furthermore, we repeat to integrate both sides of Eq. (11) twice with respect to x from 0 to x, yielding

DðxÞ
dW

dx
�D0ðxÞWðxÞþ

Z x

0
D00ðsÞ�

1

2
kmðsÞðx�sÞ2

� �
WðsÞds¼

C1

2
x2
þC2xþC3 (12)

and

DðxÞWðxÞþ
Z x

0
D00ðsÞðx�sÞ�2D0ðsÞ�

1

6
kmðsÞðx�sÞ3

� �
WðsÞds¼

C1

6
x3
þ

C2

2
x2
þC3xþC4; (13)

where the prime stands for the derivative of a function with respect to the argument. In the above integration,
Cj ðj¼ 1; . . . ;4Þ are integration constants, which can be determined below through given boundary conditions of both ends
of the beams. The above four relations are frequently used for various end supports for the determination of Cj. Once these
four constants Cj can be uniquely solved and expressed in terms of unknown WðxÞ, we substitute these obtained Cj into
Eq. (13) and derive an integral equation in WðxÞ.

3.1. Simply supported (S–S) beams

We first consider an axially graded and non-uniform beam with simply supported ends. For this case, the corresponding
boundary conditions can be stated below:

W ¼ 0; M¼ 0; x¼ 0;1: (14)

Bearing Eq. (8) in mind, application of the conditions M¼ 0 at x¼ 0;1 in (14) to (11) leads to

C2 ¼ 0; (15)

C1þC2 ¼�k

Z 1

0
ð1�sÞmðsÞWðsÞds: (16)

On the other hand, setting x¼ 0;1, respectively, in (13), using the conditions W ¼ 0 in (14) one has, respectively,

C4 ¼ 0; (17)

Z 1

0
D00ðsÞð1�sÞ�2D0ðsÞ�

1

6
kð1�sÞ3mðsÞ

� �
WðsÞds¼

C1

6
þ

C2

2
þC3þC4: (18)

Therefore, C2 ¼ C4 ¼ 0 and C1;C3 can be obtained by solving a system of algebraic equations (16) and (18). After
getting Cj ðj¼ 1; . . . ;4Þ, we then substitute them back into (13), and after collection get a Fredholm integral equation
as follows:

DðxÞWðxÞþ
Z 1

0
K1ðx; sÞWðsÞdsþk

Z 1

0
K2ðx; sÞWðsÞds¼ 0; (19)
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where

K1ðx; sÞ ¼
ðx�1Þ½D00ðsÞsþ2D0ðsÞ�; 0rsrx;
x½ðs�1ÞD00ðsÞþ2D0ðsÞ�; xosr1;

(
(20)

K2ðx; sÞ ¼

1

6
mðsÞsð1�xÞðx2

þs2�2xÞ; 0rsrx;

1

6
mðsÞxð1�sÞðx2

þs2�2sÞ; xosr1:

8>><
>>: (21)

3.2. Clamped or clamped–clamped (C–C) beams

In this subsection, we will establish an integral equation for an axially graded and non-uniform clamped beam. For this
case, the corresponding boundary conditions are

W ¼ 0; y¼ 0; x¼ 0;1: (22)

In view of W ¼ 0 and y¼ 0 at x¼ 0, from (12) and (13) we have

C3 ¼ 0; C4 ¼ 0: (23)

Keeping these results in mind, because of W ¼ 0 and y¼ 0 at x¼ 1, from (12) and (13) we further get

C1

2
þC2 ¼

Z 1

0
D00ðsÞ�

1

2
kmðsÞð1�sÞ2

� �
WðsÞds; (24)

C1

6
þ

C2

2
¼

Z 1

0
D00ðsÞð1�sÞ�2D0ðsÞ�

1

6
kmðsÞð1�sÞ3

� �
WðsÞds: (25)

We therefore determine all of Cj ðj¼ 1; . . . ;4Þ in terms of WðsÞ and then insert them back into (13). After some
manipulations, we get a Fredholm integral equation for clamped beams as follows:

DðxÞWðxÞþ
Z 1

0
K1ðx; sÞWðsÞdsþk

Z 1

0
K2ðx; sÞWðsÞds¼ 0; (26)

where

K1ðx; sÞ ¼
ð1�xÞ2½fD00ðsÞðx�s�2sxÞ�2D0ðsÞð2xþ1Þg�; 0rsrx;

x2
½D00ðsÞð3sþx�2sx�2Þ�2D0ðsÞð2x�3Þ�; xosr1;

(
(27)

K2ðx; sÞ ¼

1

6
mðsÞs2ð1�xÞ2ðs�3xþ2sxÞ; 0rsrx;

1

6
mðsÞx2

ð1�sÞ2ðx�3sþ2sxÞ; xosr1:

8>><
>>: (28)

3.3. Cantilever or clamped–free (C–F) beams

Next, we consider an axially graded and non-uniform cantilever beam with a clamped end at x¼ 0 and a free end at
x¼ 1, say, where the corresponding boundary conditions read

W ¼ 0; y¼ 0; x¼ 0; (29)

M¼ 0; Q ¼ 0; x¼ 1: (30)

For this case, taking into account (8) and (9), application of the free boundary conditions M¼ 0 and Q ¼ 0 at x¼ 1 to (10)
and (11) leads to

C1 ¼�k

Z 1

0
mðsÞWðsÞds; (31)

C1þC2 ¼�k

Z 1

0
ð1�sÞmðsÞWðsÞds; (32)

which allow us to express C1 and C2 in terms of the integrals of W by solving the above linear equations.
On the other hand, using the clamped boundary condition at x¼ 0, from Eqs. (12) and (13) in connection with the

conditions in (29) we simply get

C3 ¼ 0; C4 ¼ 0: (33)
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With these obtained Cj ðj¼ 1; . . . ;4Þ, from (13) we finally obtain a Fredholm integral equation for cantilever beams
as follows:

DðxÞWðxÞþ
Z 1

0
K1ðx; sÞWðsÞdsþk

Z 1

0
K2ðx; sÞWðsÞds¼ 0; (34)

where

K1ðx; sÞ ¼
D00ðsÞðx�sÞ�2D0ðsÞ; 0rsrx;
0; xosr1;

(
(35)

K2ðx; sÞ ¼

1

6
mðsÞs2ðs�3xÞ; 0rsrx;

1

6
mðsÞx2

ðx�3sÞ; xosr1:

8>><
>>: (36)

3.4. Clamped–pinned (C–P) beams

Here we consider an axially graded and non-uniform beam with a clamped end and a pinned end. As a representative,
we assume the case where the end x¼ 0 is clamped or fixed, while the other end x¼ 1 is pinned or simply supported. Thus
the corresponding boundary conditions are

W ¼ 0; y¼ 0; x¼ 0; (37)

W ¼ 0; M¼ 0; x¼ 1: (38)

Similar to the treatment of clamped beams, applying the boundary conditions in Eqs. (12) and (13) at x¼ 0, we can get
C3 ¼ C4 ¼ 0. In addition, using the boundary conditions in (38) on Eqs. (13) and (11), one gets

C1þC2 ¼�k

Z 1

0
ð1�sÞmðsÞWðsÞds; (39)

C1

6
þ

C2

2
¼

Z 1

0
D00ðsÞð1�sÞ�2D0ðsÞ�

1

6
kmðsÞð1�sÞ3

� �
WðsÞds: (40)

Solving the above resulting linear equations, we obtain all of Cj, which are then plugged into Eq. (13). After some
simplification, the final Fredholm equation is derived as follows:

DðxÞWðxÞþ
Z 1

0
K1ðx; sÞWðsÞdsþk

Z 1

0
K2ðx; sÞWðsÞds¼ 0; (41)

where

K1ðx; sÞ ¼

1

2
x2
ðx�3Þ½D00ðsÞð1�sÞ�2D0ðsÞ�þD00ðsÞðx�sÞ�2D0ðsÞ; 0rsrx;

1

2
x2
ðx�3Þ½D00ðsÞð1�sÞ�2D0ðsÞ�; xosr1;

8>><
>>: (42)

K2ðx; sÞ ¼

1

12
mðsÞs2ðx�1Þ½sðx2

�2x�2Þ�3ðx2
�2xÞ�; 0rsrx;

1

12
mðsÞx2

ðs�1Þ½xðs2�2s�2Þ�3ðs2�2sÞ�; xosr1:

8>><
>>: (43)

3.5. Clamped–guided (C–G) beams

Here we consider an axially graded and non-uniform beam with a guided end and a clamped end. Without loss of
generality, the end x¼ 0 is assumed clamped and the other end x¼ 1 is guided. That is, the corresponding boundary
conditions are

W ¼ 0; y¼ 0; x¼ 0; (44)

y¼ 0; Q ¼ 0; x¼ 1: (45)
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Applying Eqs. (12) and (13) to the boundary conditions at x¼ 0 in (44), C3 ¼ C4 ¼ 0 can be easily obtained. In order to get C1

and C2, setting x¼ 1 in Eqs. (12) and (13) and considering the boundary condition y¼ 0 in (45), one gets

C1

2
þC2þD0ð1ÞWð1Þ ¼

Z 1

0
D00ðsÞ�

1

2
kmðsÞð1�sÞ2

� �
WðsÞds; (46)

C1

6
þ

C2

2
�Dð1ÞWð1Þ ¼

Z 1

0
D00ðsÞð1�sÞ�2D0ðsÞ�

1

6
kmðsÞð1�sÞ3

� �
WðsÞds: (47)

It is easily found that in the above two equations, Wð1Þ is also unknown. As a consequence, another independent equation
is needed for uniquely determining C1 and C2. This is achieved by setting x¼ 1 in Eq. (10). Thus the condition Q ¼ 0 in (45)
allows us to derive

C1 ¼�k

Z 1

0
mðsÞWðsÞds: (48)

After putting the above into (46) and (47), we can determine all of Cj ðj¼ 1; . . . ;4Þ. Finally, for this case, substituting Cj into
Eq. (13), we obtain a Fredholm equation as follows:

DðxÞWðxÞþ
Z 1

0
K1ðx; sÞWðsÞdsþk

Z 1

0
K2ðx; sÞWðsÞds¼ 0; (49)

where

K1ðx; sÞ ¼
�

x2

2Dð1ÞþD0ð1Þ
fD00ðsÞ½Dð1ÞþD0ð1Þð1�sÞ��2D0ð1ÞD0ðsÞgþD00ðsÞðx�sÞ�2D0ðsÞ; 0rsrx;

�
x2

2Dð1ÞþD0ð1Þ
fD00ðsÞ½Dð1ÞþD0ð1Þð1�sÞ��2D0ð1ÞD0ðsÞg; xosr1;

8>>>><
>>>>:

(50)

K2ðx; sÞ ¼

1

6
mðsÞ x3

�ðx�sÞ3�
x2

2Dð1ÞþD0ð1Þ
½3Dð1Þ½1�ð1�sÞ2�þD0ð1Þ½1�ð1�sÞ3��

( )
; 0rsrx;

1

6
mðsÞ x3

�
x2

2Dð1ÞþD0ð1Þ
½3Dð1Þ½1�ð1�sÞ2�þD0ð1Þ½1�ð1�sÞ3��

( )
; xosr1:

8>>>>><
>>>>>:

(51)

4. Solution of the resulting integral equations

In the preceding section, for several typical beams of interest in practical applications, we have converted the governing
differential equation (6) with variable coefficients to the corresponding Fredholm integral equation. For elastic beams of
other end supports such as free–free ends, pinned–free ends, etc. the corresponding Fredholm integral equations can be
similarly obtained, which are omitted here. It will be seen in the following that the advantage of such transformations lies
in that natural frequencies of free vibration of beams with various ends can be exactly calculated. Therefore, the present
approach can overcome the drawback of the method of directly solving the governing differential equation (6) with
variable coefficients.

For the resulting Fredholm integral equation, many existing techniques may be employed to determine the numerical
solution or the approximate solution. For the present problem, it is sufficient to determine characteristic values of the
resulting Fredholm integral equation, which is related to natural frequencies of free vibration of beams via (5). Here one of
the simplest methods to seek k is invoked. That is, we expand WðxÞ as power series. Or rather, if neglecting sufficiently
small error, the unknown WðxÞ can be approximately expanded as

WðxÞ ¼
XN

n ¼ 0

cnx
n; 0rxr1; (52)

where cn are unknown coefficients and N is a certain positive integer, which is chosen large enough such that the rest of the
terms have a negligible error. Inserting (52) into the resulting Fredholm integral equation for each case leads to

XN

n ¼ 0

cnx
nDðxÞþ

XN

n ¼ 0

cn

Z 1

0
K1ðx; sÞsn dsþk

XN

n ¼ 0

cn

Z 1

0
K2ðx; sÞsn ds¼ 0: (53)

We multiply both sides of (53) by xm and then integrate with respect to x between 0 and 1, yielding a system of linear
algebraic equations in cn:

XN

n ¼ 0

ðdmnþK1mnþkK2mnÞcn ¼ 0; m¼ 0;1;2; . . . ;N (54)
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with

dmn ¼

Z 1

0
xmþnDðxÞdx; (55)

Kjmn ¼

Z 1

0

Z 1

0
Kjðx; sÞx

msn ds dx; j¼ 1;2: (56)

To obtain a non-trivial solution of the resulting system, the determinant of the coefficient matrix of the system has to
vanish. Accordingly, we obtain a characteristic equation in k

detðdmnþK1mnþkK2mnÞ ¼ 0: (57)

Once a non-trivial solution of the above algebraic equation (54) is sought, which is substituted into (52), we can obtain the
corresponding mode shape of free vibration.
5. Numerical results and discussion

A theoretical model for determining natural frequencies of beams with variable flexural rigidity and mass density has
been formulated in the preceding section. Here numerical computations are carried out to show the effectiveness of the
proposed method.
5.1. A comparison of the results for uniform homogeneous beams

As the first example, we consider the case of a homogeneous beam with uniform cross-section. For this case, DðxÞ ¼ EI

and mðxÞ ¼ rA are unchanged, and natural frequencies can be exactly calculated from the corresponding frequency
equations listed in Appendix A. In order to check the convergence of the suggested method, we have calculated non-
dimensional natural frequencies, O¼oL2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=EI

p
, of cantilever beams by taking different N values in (52). Evaluated

results of first four non-dimensional natural frequencies, On, and the exact ones are tabulated in Table 1. By comparison,
from Table 1 we find that numerical results have rapid convergence. As N increases from 2 to 6, the numerical results of the
first two natural frequencies are identical to the exact results up to four decimal places, which indicates that the present
approach is very efficient. However, the accuracy of the results drops with the vibration modes increasing. For the fourth
natural frequency, the numerical result with N¼ 6 deviates from the exact one by about 0.08 percent. However, if taking
N¼ 10, we find that the numerical and exact results agree up to four decimal places. As a result, higher accuracy can be
achieved through increasing N. In the following computations, we take N¼ 6 to calculate the first few order natural
frequencies, unless otherwise stated.
5.2. Effects of variable cross-section

The second illustrative example is devoted to Euler–Bernoulli beams with non-uniform cross-section along the length
direction. Here keeping the material properties E and r constant, two cases are considered. One is a beam with a cross-
section of constant height and linearly variable width, which means A=A0 ¼ I=I0 ¼ 1þax, a being a geometrical parameter.
For this case, Hodges et al. [28] used a finite element-transfer matrix approach and gave natural frequencies of cantilever
beams. By using the Rayleigh–Ritz method incorporating Laplace multiplier method, Abrate [18] gave a 10-term Rayleigh–
Ritz solution of natural frequencies for such tapered beams. Our numerical results show excellent consistency with the
above-mentioned results, and a comparison of the non-dimensional natural frequencies, On ¼onL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA0=EI0

p
, for

cantilever beams with a¼�0:5 is given in Table 2. The second case is a beam with a cross-section of constant width and
linearly varying height, i.e. A=A0 ¼ 1þax; I=I0 ¼ ð1þaxÞ3. The corresponding non-dimensional natural frequencies are also
calculated and listed in Table 3 for clamped–pinned and clamped–clamped beams. Other numerical results derived
previously by different approaches including finite element method [29] and modified Rayleigh–Ritz method [18,29] are
presented in Table 3. From Table 3, it is seen that our results agree very well with the existing results.
Table 1
First four non-dimensional natural frequencies On for uniform cantilever beams.

n Excat [27] N¼ 2 N¼ 4 N¼ 6 N¼ 10

1 3.5160 3.5171 3.5160 3.5160 3.5160

2 22.0345 22.2334 22.0351 22.0345 22.0345

3 61.6972 118.1444 63.2397 61.7151 61.6972

4 120.9019 – 128.5194 121.1184 120.9019
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Table 2

Non-dimensional natural frequencies On for tapered cantilever beams with A=A0 ¼ I=I0 ¼ 1-0:5x.

n [28] [18] Present ðN¼ 6Þ Present ðN ¼ 10Þ

1 4.31517029863 4.31517029864 4.31517029912 4.31517029863

2 23.5192566 23.51926282671 23.51925663968

3 63.199197 63.21647063580 63.19919650267

Table 3

Non-dimensional natural frequencies On for tapered beams with A=A0 ¼ 1þax; I=I0 ¼ ð1þaxÞ3.

a n Finite elements [29] Rayleigh method [29] Modified Rayleigh

method [29]

Modified Rayleigh

method [18]

Present (N¼ 10)

C–P �0.1 1 14.92 14.94 14.85 14.848896 14.84889605539

2 47.637037 47.63703719174

3 99.171635 99.17165323722

0 1 15.418 15.45 15.41 15.418206 15.41820571698

2 49.964862 49.96486203816

3 104.24770 104.24770194514

0.1 1 15.997 16.00 15.96 15.9687099 15.96870988416

2 52.237227 52.23722689317

3 109.20235 109.20235370558

0.2 1 16.561 16.58 16.50 16.502899 16.50289889399

2 54.4614625 54.46146253076

3 114.051623 114.05163085534

C–C �0.1 1 21.24097778688

2 58.55005461550

3 114.78027750905

0 1 22.373 22.451 22.375 22.3732854 22.37328544806

2 61.672823 61.67282294761

3 120.903392 120.90340027002

0.1 1 23.521 23.74 23.61 23.479607 23.47960724845

2 64.721086 64.72106768601

3 126.87804 126.87805071630

0.2 1 24.647 25.5 25.13 24.563418 24.5634175326

2 67.704755 67.7047553184

3 132.72398 132.7240684027
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5.3. Effects of variable flexural rigidity and mass density

In what follows, free vibration of axially graded beams with uniform cross-section is considered. For non-homogeneous
beams, Elishakoff and Candan presented closed-form solutions to vibrating non-homogeneous beams by the inverse
method [9]. We first take some special polynomials, that is, mass density rðxÞ and Young’s modulus EðxÞ can be represented
as polynomial functions:

rðxÞ ¼ r0

XJ

j ¼ 0

ajx
j; EðxÞ ¼ E0

XH

h ¼ 0

bhx
h; (58)

where J and H are any non-negative integers, aj ð0r jr JÞ and bh ð0rhrHÞ are any constants with requirements
rðxÞ40; EðxÞ40 for all x 2 ½0;1�.
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Here for simplicity, the mass density and Young’s modulus are chosen such that they satisfy specified forms:
�

Table

Evalu

rðx

1

1þ

1:59
Case A: constant density and specified Young’s modulus

rðxÞ ¼ r0a0; EðxÞ ¼ E0

XH

h ¼ 0

b0hx
h; (59)

Case B: linearly varying density and specified Young’s modulus
�
rðxÞ ¼ r0ða0þa1xÞ; EðxÞ ¼ E0

XH

h ¼ 0

b1hx
h; (60)

Case C: parabolically varying density and specified Young’s modulus
�
rðxÞ ¼ r0ða0þa1xþa2x
2
Þ; EðxÞ ¼ E0

XH

h ¼ 0

b2hx
h: (61)
The objective of such a choice is two-fold: one being that the results to be obtained can be compared with the closed-
form solution for the chosen polynomials under specified cases, and the other being to show that it is still capable of
determining natural frequencies for other cases when the closed-form solution is not available. For comparison, in the

present study, we take aj ðj¼ 0;1;2Þ to be arbitrary constants unless otherwise stated, bjh ðj¼ 0;1;2;h¼ 0; . . . ; jþ4Þ are

related to aj ðj¼ 0;1;2Þ, and given in Appendix B. For chosen constants aj and bjh, the closed-form solution of fundamental

frequency can be obtained when the difference between the degree number of EðxÞ and rðxÞ is equal to 4 by the inverse
method [9].

Here we consider the case of cantilever beams. Numerical results of natural frequency parameter kn; kn ¼o2r0AL4=E0I,

can be evaluated for arbitrary combination of rðxÞ and EðxÞ, and those for the first two modes are listed in Table 4. In

particular, we find that the fundamental frequency for homogeneous cantilever beams (i.e. rðxÞ ¼ r0; EðxÞ ¼ E0) is the same

as the exact one [27], whereas the second-order natural frequency is in good agreement with the exact one [27] with error
less than 0.003 percent. In addition, for H¼ Jþ4; J¼ 0;1;2, evaluated fundamental frequencies are identical to the closed-
form solutions derived in [9]. Other natural frequencies of arbitrary order vibrational mode are also obtained, but they

seem not to be derived in closed form by the inverse method in [9]. From Table 4, when EðxÞ takes E0
PH

h ¼ 0 bjhx
h, the

obtained k values have only slight change when HZ2 for the same mass density, irrespective of the first-order or the

second-order natural frequencies. This is attributed to the slight variation of EðxÞ ¼ E0
PH

h ¼ 0 bjhx
h
ðj¼ 0;1;2Þwhen HZ2. It

is worth mentioning that in [24], an approximate result with high accuracy has been derived by using the perturbation
functional method. Here for the above case we used the present method to obtain the exact result only if N¼ 6.
4

ated natural frequency parameter kn for cantilever beams.

Þ=r0 DðxÞ=E0I¼
PH

h ¼ 0 b0hx
h Present results Exact results

H 1st 2nd 1st 2nd

0 321.4215 12623.84 321.4215 [27] 12623.5 [27]

1 357.1973 15615.45

2 360.7842 16174.13

3 359.9009 15962.74

4 360.0000 15994.99 360 [9]

x 0 443.3508 19861.39

1 497.2307 25081.87

2 504.2409 26363.87

3 504.0932 26321.93

4 503.9725 26274.88

5 504.0000 26288.47 504 [9]

54þ0:04xþx2 0 590.2220 26503.05

1 662.4000 33454.66

2 671.9104 35176.27

3 671.7862 35141.46

4 672.0588 35246.03

5 671.9882 35211.73

6 672.0000 35218.59 672 [9]
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The above examples are only related to polynomials. Next, we will demonstrate that the suggested method is also
suitable for analyzing the free vibration related to flexural rigidity and mass density of continuously varying functions of x
other than polynomials. For this purpose, let us consider the case of flexural rigidity and mass density of trigonometric
functions:

DðxÞ ¼D0½1þacosðpxÞ�; rðxÞ ¼ r0½1þbcosðpxÞ�; (62)

where a;b are parameters and must satisfy jajo1; jbjo1 to insure that DðxÞ and rðxÞ are positive. For the above
assumptions, we calculate the first three non-dimensional natural frequencies, On ¼onL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0A=D0

p
, which are displayed in

Tables 5 and 6. It is worth noting that in [13], the fundamental frequency of simply supported beams having the above
axial gradient with b¼ 4a has been obtained to be O1 ¼ p2, which is independent of a values. This analytic result is
identical to our result in Table 5. Nevertheless, for other cases of interest in practice, through the present method we also
can determine natural frequencies of beams with various end supports for b¼ 4a (see Table 5). Also, for the case of b¼ a,
the corresponding results are shown in Table 6. It is interesting to point out that natural frequencies are sensitive to a,
except for the above-mentioned case (i.e. simply supported beams with b¼ 4a).
Table 5

Non-dimensional natural frequencies On for beams with DðxÞ and rðxÞ given by (62) with b¼ 4a.

n a

�0.2 �0.15 �0.1 0 0.1 0.15 0.2

C–F 1 2.5690 2.7572 2.9714 3.5160 4.3428 4.9699 5.8908

2 20.5462 20.8498 21.1877 22.0345 23.4080 24.6452 27.0597

3 64.1287 62.8517 62.0246 61.7151 63.5303 65.7357 70.1756

S–S 1 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696

2 42.5405 41.1404 40.1979 39.4791 40.1979 41.1404 42.5522

3 98.9439 92.4350 90.4469 88.8481 90.3370 92.4350 98.6659

C–P 1 14.2117 14.4917 14.7850 15.4182 16.1235 16.5065 16.9107

2 51.5819 50.7722 50.2210 49.9742 51.1459 52.4695 54.4812

3 112.9319 110.0300 108.2707 107.4485 110.4157 113.7307 119.2732

C–C 1 22.3700 22.3715 22.3726 22.3735 22.3726 22.3715 22.3700

2 64.7658 63.3937 62.4327 61.6883 62.4330 63.3897 64.7668

3 138.6441 132.6284 131.3240 129.2174 131.2343 132.3560 137.5759

Table 6

Non-dimensional natural frequencies On for beams with DðxÞ and rðxÞ given by (62) with b¼ a.

n a

�0.2 �0.15 �0.1 0 0.1 0.15 0.2

C–F 1 3.0224 3.1416 3.2632 3.5160 3.7853 3.9277 4.0763

2 21.2069 21.4179 21.6255 22.0345 22.4447 22.6534 22.8668

3 61.2666 61.3741 61.4838 61.7151 61.9758 62.1192 62.2737

S–S 1 9.8395 9.8528 9.8622 9.8696 9.8622 9.8528 9.8395

2 39.5239 39.5045 39.4905 39.4791 39.4905 39.5045 39.5239

3 90.2491 90.2874 90.3149 88.8481 90.3149 90.2874 90.2491

C–P 1 14.9196 15.0527 15.1799 15.4182 15.6367 15.7389 15.8365

2 49.6719 49.7506 49.8265 49.9742 50.1206 50.1944 50.2691

3 107.5159 107.5407 107.5357 107.4485 107.2753 107.1613 107.0311

C–C 1 22.2984 22.3316 22.3549 22.3735 22.3549 22.3316 22.2984

2 61.6542 61.6699 61.6804 61.6883 61.6804 61.6699 61.6542

3 128.7765 128.9739 129.1098 129.2174 129.1098 128.9739 128.7780
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5.4. Effects of axial gradient parameter

Finally we consider a functionally graded beam with axial non-homogeneity, where the cross-sectional area A and
moment of inertia I are unchanged. This benefits the design of non-homogeneous beams for certain particular purposes. To
show the effect of the non-homogeneity on the natural frequencies, instead of the usual power-law gradient assumption,
here we take material properties (such as Young’s modulus, mass density, etc.) as follows:

YðxÞ ¼
Y1 1�

eax�1

ea�1

� �
þY2

eax�1

ea�1
; aa0;

Y1ð1�xÞþY2x; a¼ 0;

8><
>: (63)

where Y1 and Y2 are the corresponding material properties at the ends x¼ 0;1, respectively, and a is the gradient
parameter describing the volume fraction change of both constituents involved. On taking the usual power-law gradient
assumption, the calculation of Kjmn in (54) inevitably involves divergent integrals; so in the present study, we choose the
above gradient form. The variation of YðxÞ against x is shown in Fig. 1 for Y2 ¼ 3Y1. In the following calculations, two
materials chosen are aluminum and zirconia, the material properties of which are [30]

Al : Ea ¼ 70 GPa; ra ¼ 2702 kg=m3; (64)

ZrO2 : Ez ¼ 200 GPa; rz ¼ 5700 kg=m3: (65)

Based on the characteristic equation (57), the influence of the gradient parameter a on dimensionless natural frequencies

O¼oL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
raAL2

EaI

s
(66)

is displayed in Table 7 with N¼ 6 for two different cases, one being Al rich near the end x¼ 0 and ZrO2 rich near the end
x¼ 1 (Case 1) and the other being Al rich near the end x¼ 1 and ZrO2 rich near the end x¼ 0 (Case 2), respectively. By
Fig. 1. Variation of the graded material properties governed by (63) with Y2 ¼ 3Y1.

Table 7
Non-dimensional fundamental frequencies O1 of axially graded beams.

a C–F C–G S–S C–P C–C

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

�10 3.5656 4.1800 5.8206 6.4845 11.4532 9.9358 16.4775 17.2993 24.0576 24.7949

�3 3.1421 4.8317 5.4433 7.0182 11.2443 10.3669 16.0307 17.8701 23.9456 24.9375

0 2.9256 5.0156 5.3275 7.0321 10.8663 10.8663 15.8734 17.9147 24.3752 24.3752

3 2.8544 4.8466 5.3198 6.8127 10.3669 11.2443 15.7171 17.8867 24.9375 23.9456

10 3.0431 4.4629 5.5135 6.5802 9.9358 11.4532 15.4930 17.9050 24.7949 24.0576

HBa 3.5160 5.5933 9.8696 15.4182 22.3733

a HB means homogeneous beams.
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comparing the results of cases 1 and 2 in Table 7, the gradient parameter plays a dominant role in determining natural
frequencies although two constituent phases are unchanged. In addition, the fundamental frequencies are also sensitive to
the end supports, as expected. Here for comparison, we also list numerical results of the first natural frequencies of
homogeneous beams with the corresponding end conditions. It is noted that for simply supported and clamped beams, the
natural frequencies for Case 1 are identical to those for Case 2 with the corresponding �a. However, for clamped–pinned,
or cantilever beams, such trends do not exist. Generally speaking, for the latter the fundamental frequencies for Case 2 are
larger than those for Case 1 for the same gradient parameter a.

6. Conclusions

A new approach has been presented to solve free vibration of Euler–Bernoulli beams with continuously varying flexural
rigidity and mass density. Instead of directly solving the fourth-order governing differential equation with variable
coefficients, for various beams we transformed the corresponding problem to Fredholm integral equations. By expanding the
mode shapes as power series, the resulting Fredholm integral equations were solved. The existence condition of a non-trivial
solution permitted us to obtain natural frequencies. The effectiveness of the method has been confirmed by comparing our
numerical results with those available for special cases, including rectangular Euler–Bernoulli beams with linearly varying
width or depth and graded beams with polynomial and trigonometric function gradient. Our suggested approach is capable of
treating arbitrarily axial gradient and varying cross-section. In particular, we illustrated the effects of the gradient parameter
on the fundamental frequency of free vibration of an Al=ZrO2 composite beam under various end supports.
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Appendix A

The characteristic equations of free vibration of uniform Euler–Bernoulli beams for various end supports are [27]

simply supported beams : sin
ffiffiffiffi
O
p
¼ 0;

clamped2clamped beams : cos
ffiffiffiffi
O
p

cosh
ffiffiffiffi
O
p
�1¼ 0;

cantilever beams : cos
ffiffiffiffi
O
p

cosh
ffiffiffiffi
O
p
þ1¼ 0;

clamped2pinned beams : tan
ffiffiffiffi
O
p
�tanh

ffiffiffiffi
O
p
¼ 0;

clamped2guided beams : tan
ffiffiffiffi
O
p
þtanh

ffiffiffiffi
O
p
¼ 0

with

O¼oL2

ffiffiffiffiffiffiffi
rA

EI

r
:

Appendix B

The following constants are taken from [9] with only slight form change:

b00 ¼ 26a0; b01 ¼ 16a0; b02 ¼ 6a0; b03 ¼�4a0; b04 ¼ a0;

b10 ¼
2ð71a1þ91a0Þ

5
; b11 ¼

2ð51a1þ56a0Þ

5
; b12 ¼

2ð31a1þ21a0Þ

5
;

b13 ¼
2ð11a1�14a0Þ

5
; b14 ¼

�18a1þ7a0

5
; b15 ¼ a1;

b20 ¼
465a2þ568a1þ728a0

15
; b21 ¼

2ð181a2þ204a1þ224a0Þ

15
;

b22 ¼
259a2þ248a1þ168a0

15
; b23 ¼

4ð39a2þ22a1�28a0Þ

15
;

b24 ¼
53a2�72a1þ28a0

15
; b25 ¼

2ð2a1�5a2Þ

3
; b26 ¼ a2:
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